※教师简介 张丹,现任beat365正版唯一官网必一讲师。2022年毕业于电子科技大学,获得工学博士学位。主要研究方向为人工智能、迁移学习、目标检测等,已在国际顶级期刊、国内外学术会议等发表科研论文10余篇,包括Information Fusion、IEEE TNNLS。参与国家自然科学基金、国家重点研发计划、四川省科技厅重点项目等科研项目3项。 ※研究领域 人工智能 迁移学习 目标检测 ※教育背景 2018/09-2022/06 电子科技大学 博士 2017/09-2018/07 电子科技大学 硕士(硕博连读) ※职业经历 2022/09年至今 beat365正版唯一官网必一计算机与人工智能学院 讲师 ※研究成果 代表性学术论文 [1] Zhang D, Mao Y, Liu Y, Xiong L, Zhou L. Multi-source unsupervised domain adaptation for object detection[J]. Information Fusion, 2022, 78: 138-148(SCI, IF:17.564) [2] Zhang D, Li J, Li X, Du Z, Xiong L, Ye M. Local-global attentive adaptation for object detection[J]. Engineering Applications of Artificial Intelligence, 2021, 100: 104208(SCI, IF: 7.802) [3] Zhang D, Ye M, Xiong L, Li S, Li X. Source-style transferred mean teacher for source-data free object detection. ACM Multimedia Asia 2021 [4] Li X, Zhang D, Ye M, Li X, Dou Q, Lv Q. Bidirectional generative transductive zero-shot learning[J]. Neural Computing and Applications, 2020, 1-14(SCI, IF:5.102) [5] Zhang D, Li J, Xiong L, Lin L, Ye M, Yang S. Cycle-consistent domain adaptive faster rcnn[J]. IEEE Access, 2019, 7:123903-123911(SCI, IF: 3.476) [6] Lin L, Zhang D, Zheng X, Ye M, Guo J. Recurrent matching networks of spatial alignment learning for person re-identification[J]. Multimedia Tools and Applications, 2020, 79(45): 33735- 33755(SCI, IF:2.577) [7] Xiong L, Ye M, Zhang D, Gan Y, Hou D. Domain adaptation of object detector using scissor-like networks[J]. Neurocomputing, 2021, 453: 263-271(SCI, IF:5.779) [8] Zhou L, Ye M, Zhang D, Zhu C, Ji L. Prototype-based multisource domain adaptation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021(SCI, IF:14.255) [9] Xiong L, Ye M, Zhang D, Gan Y, Liu Y. Source data-free domain adaptation for a faster r-cnn[J]. Pattern Recognition, 2021, 108436(SCI, IF:8.518) [10] Xiong L, Ye M, Zhang D, Gan Y, Li X, Zhu Y. Source data-free domain adaptation of object detector through domain-specific perturbation[J]. International Journal of Intelligent Systems, 2021(SCI, IF:8.993)
主要科研项目 [1] 国家重点研发计划,2018YFE0203900,基于人工智能的深度网络视频编码方法及系统,2019.8-2023.7,主研
|